organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[(1H-Benzimidazol-2-yl)sulfanylmethyl]benzonitrile

Jin Rui Lin, Jia He, Yang Qian and Hong Zhao*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: zhaohong@seu.edu.cn

Received 4 May 2009; accepted 16 May 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.070; wR factor = 0.184; data-to-parameter ratio = 15.8.

In the title compound, $C_{15}H_{11}N_3S$, the dihedral angle between the benzimidazole ring system and the benzene ring is 51.8 (2)°. The crystal structure exhibits intermolecular N-H···N hydrogen bonds which lead to the formation of C(4)chains along the [001] direction.

Related literature

For pharmacological activities of benzimidazole and its derivatives, see: Negwer & Scharnow (2001). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

C15H11N3S	
$M_r = 265.33$	
Monoclinic,	$P2_{1}/c$

a = 15.384 (4) Å b = 9.280 (4) Å c = 9.887 (4) Å

 $\beta = 101.63 \ (3)^{\circ}$ V = 1382.5 (8) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Rigaku SCXmini diffractometer	
Absorption correction: multi-scan	
(CrystalClear; Rigaku, 2005)	
$T_{\min} = 0.927, T_{\max} = 0.947$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.184$ H-atom parameters constrained S = 1.132711 reflections

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N2-H2A\cdots N1^{i}$ 0.86 1.98 2.838 (3) 174

 $\mu = 0.22 \text{ mm}^{-1}$

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

12254 measured reflections

2711 independent reflections 1926 reflections with $I > 2\sigma(I)$

T = 292 K

 $R_{\rm int} = 0.052$

172 parameters

 $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min}$ = -0.16 e Å⁻³

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by financial support from Southeast University for Young Researchers (grant No. 4007041027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2210).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Negwer, M. & Scharnow, H. G. (2001). Organic Chemical Drugs and Their Synonyms, 8th extensively enlarged ed. Weinheim: Wiley-VCH Verlag GmbH.
- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o1358 [doi:10.1107/S1600536809018546]

3-[(1H-Benzimidazol-2-yl)sulfanylmethyl]benzonitrile

J. R. Lin, J. He, Y. Qian and H. Zhao

Comment

It is well known that Benzimidazole and its derivatives have received much attention due to their versatile pharmacological activities (Negwer & Scharnow, 2001). To further investigate the influence of the bridging ligand on the formation of supramolecular complexes, we designed and prepared a Benzimidazole-containing ligand, and used the ligand to generate some coordination polymers with interesting topologies. Here, we reported the crystal structure of the title compound. The molecular structure of the title compound, $C_{15}H_{11}N_3S$, and the atomic labeling scheme are shown in Fig. 1. In this Structure, the nine-membered benzimidazole ring system C1/N1/C2/C3/C4/C5/C6/C7/N2 is essentially planar. The phenyl ring C9/C10–C14 is connected to the benzimidazole ring system by the SCH₂ group. The bond lengths and angles have normal values, the dihedral angle between the benzimidazole ring system and the phenyl substituent is 51.77 (22)°, and the molecules are linked by intermolecular N—H···N hydrogen bonds which leads to the formation chains C(4) along the [001] direction (Bernstein *et al.*, 1995).

Experimental

3-(bromomethyl)benzonitrile (11 mmol) was added to 2-mercaptobenzimidazole (10 mmol) in dry ethanol (25 ml). The mixture was refluxed for 24 h. The reaction mixture was diluted with ethyl acetate (100 ml), and the resulting solid was collected and dissolved in 20 ml of water. 40 ml of a solution of sodium hydrogen carbonate (35 g in 100 ml of water) was added. A white powder was isolated by filtration and dried to give the title compound. Colourless crystals of the title compound suitble for X-ray diffraction were from a solution of 50 mg in 20 ml methanol after 7 d.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.96 Å (methyl) with $U_{iso}(H) = 1.2U_{eq}(Caromatic, Cmethylene)$

Figures

Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. Fig. 2. Packing diagram of the title compound, showing the structure along the *a* axis.

3-[(1H-Benzimidazol-2-yl)sulfanylmethyl]benzonitrile

Crystal data

 $C_{15}H_{11}N_3S$ $F_{000} = 552$ $M_r = 265.33$ $D_x = 1.275 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.384 (4) Å b = 9.280 (4) Å c = 9.887 (4) Å $\beta = 101.63$ (3)° V = 1382.5 (8) Å³ Z = 4

Data collection

Rigaku SCXmini diffractometer	2711 independent reflections
Radiation source: fine-focus sealed tube	1926 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}$
T = 292 K	$\theta_{\min} = 2.6^{\circ}$
ω scans	$h = -18 \rightarrow 18$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -11 \rightarrow 11$
$T_{\min} = 0.927, \ T_{\max} = 0.947$	$l = -12 \rightarrow 12$
12254 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.070$	H-atom parameters constrained
$wR(F^2) = 0.184$	$w = 1/[\sigma^2(F_o^2) + (0.0802P)^2 + 0.4001P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{max} < 0.001$
2711 reflections	$\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Mo Kα radiation

Cell parameters from 2386 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 27.5^{\circ}$

 $\mu = 0.22 \text{ mm}^{-1}$ T = 292 K

Prism, colourless

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

methods returned at the focation: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 .

factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3269 (2)	0.2203 (3)	0.2414 (3)	0.0566 (8)
C2	0.3718 (2)	0.4296 (3)	0.3180 (3)	0.0541 (8)
C3	0.3983 (3)	0.5528 (3)	0.3966 (3)	0.0666 (9)
Н3	0.3940	0.5575	0.4890	0.080*
C4	0.4308 (3)	0.6672 (3)	0.3330 (3)	0.0710 (10)
H4	0.4484	0.7505	0.3834	0.085*
C5	0.4379 (3)	0.6608 (3)	0.1944 (3)	0.0684 (9)
Н5	0.4602	0.7398	0.1546	0.082*
C6	0.4125 (2)	0.5406 (3)	0.1158 (3)	0.0639 (9)
Н6	0.4175	0.5362	0.0237	0.077*
C7	0.3791 (2)	0.4256 (3)	0.1795 (3)	0.0517 (7)
C8	0.2071 (3)	0.0318 (4)	0.3261 (4)	0.0835 (11)
H8A	0.2330	0.0408	0.4236	0.100*
H8B	0.1646	0.1092	0.3001	0.100*
C9	0.1622 (3)	-0.1128 (4)	0.2964 (4)	0.0772 (10)
C10	0.1924 (3)	-0.2344 (5)	0.3728 (5)	0.0999 (14)
H10	0.2388	-0.2259	0.4489	0.120*
C11	0.1549 (4)	-0.3684 (5)	0.3378 (6)	0.1166 (17)
H11	0.1762	-0.4493	0.3897	0.140*
C12	0.0852 (4)	-0.3812 (5)	0.2247 (6)	0.1106 (16)
H12	0.0605	-0.4711	0.1993	0.133*
C13	0.0527 (3)	-0.2595 (4)	0.1495 (5)	0.0899 (12)
C14	0.0911 (3)	-0.1256 (4)	0.1844 (4)	0.0814 (11)
H14	0.0694	-0.0446	0.1332	0.098*
C15	-0.0208 (4)	-0.2675 (6)	0.0345 (6)	0.1185 (18)
N1	0.33875 (19)	0.2979 (3)	0.3553 (2)	0.0602 (7)
N2	0.34898 (18)	0.2904 (2)	0.1329 (2)	0.0572 (7)
H2A	0.3450	0.2572	0.0507	0.069*
N3	-0.0786 (4)	-0.2759 (6)	-0.0567 (6)	0.161 (2)
S1	0.29335 (7)	0.03901 (9)	0.22331 (9)	0.0739 (4)
44	(82)			
лютіс аі <i>spiaceme</i>	n parameters (A ⁻)			

Fractional atomic coordinates and	isotropic or equivalent	isotropic displacement	parameters (.	(A^2)	
	1 1	1 1			

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}
0.090 (2)	0.0474 (16)	0.0342 (14)	-0.0029 (15)	0.0174 (15)
0.087 (2)	0.0441 (14)	0.0328 (14)	0.0006 (14)	0.0159 (14)
0.109 (3)	0.0535 (17)	0.0404 (16)	-0.0015 (17)	0.0226 (17)
0.112 (3)	0.0462 (17)	0.0565 (19)	-0.0052 (18)	0.0212 (19)
0.103 (3)	0.0458 (16)	0.0602 (19)	-0.0037 (17)	0.0247 (19)
0.101 (3)	0.0558 (18)	0.0389 (15)	-0.0017 (17)	0.0245 (16)
0.083 (2)	0.0421 (14)	0.0311 (13)	0.0052 (14)	0.0148 (13)
0.108 (3)	0.081 (3)	0.067 (2)	-0.022 (2)	0.031 (2)

C1

C2

C3

C4

C5

C6

C7

C8

 U^{23}

0.0013 (12)

0.0015 (11)

-0.0079(13)

-0.0082(14)

0.0059 (15)

0.0057 (13)

0.0009 (11)

-0.0129 (19)

supplementary materials

C9	0.095 (3)	0.068 (2)	0.073 (2)	-0.016 (2)	0.027 (2)	0.0022 (19)
C10	0.104 (3)	0.094 (3)	0.100 (3)	-0.017 (3)	0.018 (3)	0.016 (3)
C11	0.119 (4)	0.081 (3)	0.146 (5)	-0.016 (3)	0.017 (4)	0.031 (3)
C12	0.123 (4)	0.065 (3)	0.149 (5)	-0.023 (3)	0.040 (4)	0.002 (3)
C13	0.101 (3)	0.074 (3)	0.095 (3)	-0.024 (2)	0.021 (3)	-0.008 (2)
C14	0.096 (3)	0.066 (2)	0.083 (3)	-0.010 (2)	0.023 (2)	-0.0007 (19)
C15	0.139 (5)	0.100 (4)	0.112 (4)	-0.041 (3)	0.018 (4)	-0.014 (3)
N1	0.104 (2)	0.0477 (13)	0.0330 (12)	-0.0047 (13)	0.0241 (13)	-0.0015 (10)
N2	0.0971 (19)	0.0497 (13)	0.0276 (11)	-0.0005 (13)	0.0189 (12)	-0.0020 (10)
N3	0.159 (5)	0.158 (5)	0.149 (5)	-0.053 (4)	-0.010 (4)	-0.015 (4)
S1	0.1199 (8)	0.0501 (5)	0.0600 (6)	-0.0158 (5)	0.0378 (5)	-0.0082 (4)

Geometric parameters (Å, °)

C1—N1	1.319 (3)	C8—S1	1.829 (4)
C1—N2	1.355 (3)	C8—H8A	0.9700
C1—S1	1.758 (3)	C8—H8B	0.9700
C2—C3	1.396 (4)	C9—C10	1.385 (6)
C2—C7	1.397 (4)	C9—C14	1.396 (6)
C2—N1	1.401 (4)	C10—C11	1.386 (6)
C3—C4	1.379 (4)	C10—H10	0.9300
С3—Н3	0.9300	C11—C12	1.390 (7)
C4—C5	1.398 (4)	C11—H11	0.9300
С4—Н4	0.9300	C12—C13	1.389 (6)
C5—C6	1.370 (4)	C12—H12	0.9300
С5—Н5	0.9300	C13—C14	1.389 (5)
С6—С7	1.390 (4)	C13—C15	1.435 (8)
С6—Н6	0.9300	C14—H14	0.9300
C7—N2	1.384 (4)	C15—N3	1.135 (7)
С8—С9	1.510 (5)	N2—H2A	0.8600
N1—C1—N2	113.6 (3)	H8A—C8—H8B	108.7
N1-C1-S1	126.6 (2)	C10—C9—C14	119.1 (4)
N2-C1-S1	119.6 (2)	C10—C9—C8	121.8 (4)
C3—C2—C7	119.7 (3)	C14—C9—C8	119.0 (4)
C3—C2—N1	130.4 (3)	C9—C10—C11	121.2 (5)
C7—C2—N1	109.9 (2)	C9—C10—H10	119.4
C4—C3—C2	118.0 (3)	C11—C10—H10	119.4
С4—С3—Н3	121.0	C10-C11-C12	119.5 (5)
С2—С3—Н3	121.0	C10—C11—H11	120.2
C3—C4—C5	121.4 (3)	C12—C11—H11	120.2
С3—С4—Н4	119.3	C13—C12—C11	119.8 (4)
С5—С4—Н4	119.3	C13—C12—H12	120.1
C6—C5—C4	121.4 (3)	C11—C12—H12	120.1
С6—С5—Н5	119.3	C12—C13—C14	120.4 (4)
С4—С5—Н5	119.3	C12—C13—C15	121.6 (4)
C5—C6—C7	117.2 (3)	C14—C13—C15	118.0 (4)
С5—С6—Н6	121.4	C13—C14—C9	119.9 (4)
С7—С6—Н6	121.4	C13—C14—H14	120.0
N2—C7—C6	132.4 (3)	C9—C14—H14	120.0

10 67 60	105.2 (2)	N2 615 612	1 7 0 0 (7)
N2	105.3 (2)	N3-C15-C13	179.0 (7)
C6—C7—C2	122.3 (3)	C1—N1—C2	104.3 (2)
C9—C8—S1	106.2 (3)	C1—N2—C7	107.0 (2)
С9—С8—Н8А	110.5	C1—N2—H2A	126.5
S1—C8—H8A	110.5	C7—N2—H2A	126.5
С9—С8—Н8В	110.5	C1—S1—C8	102.13 (15)
S1—C8—H8B	110.5		
C7—C2—C3—C4	0.0 (5)	C11—C12—C13—C15	-178.2 (5)
N1—C2—C3—C4	178.4 (3)	C12—C13—C14—C9	-0.6 (7)
C2—C3—C4—C5	-0.4 (6)	C15—C13—C14—C9	179.4 (4)
C3—C4—C5—C6	0.2 (6)	C10-C9-C14-C13	-1.1 (6)
C4—C5—C6—C7	0.3 (5)	C8—C9—C14—C13	175.6 (4)
C5—C6—C7—N2	-179.1 (3)	C12-C13-C15-N3	-23 (38)
C5—C6—C7—C2	-0.6 (5)	C14-C13-C15-N3	157 (37)
C3—C2—C7—N2	179.3 (3)	N2-C1-N1-C2	-0.4 (4)
N1—C2—C7—N2	0.6 (4)	S1—C1—N1—C2	175.5 (3)
C3—C2—C7—C6	0.5 (5)	C3—C2—N1—C1	-178.6 (4)
N1—C2—C7—C6	-178.2 (3)	C7—C2—N1—C1	-0.2 (4)
S1—C8—C9—C10	88.9 (4)	N1-C1-N2-C7	0.8 (4)
S1—C8—C9—C14	-87.8 (4)	S1—C1—N2—C7	-175.4 (2)
C14-C9-C10-C11	1.6 (7)	C6-C7-N2-C1	177.8 (4)
C8—C9—C10—C11	-175.0 (4)	C2C7	-0.8 (3)
C9—C10—C11—C12	-0.4 (8)	N1—C1—S1—C8	41.3 (4)
C10-C11-C12-C13	-1.3 (8)	N2-C1-S1-C8	-143.1 (3)
C11—C12—C13—C14	1.9 (8)	C9—C8—S1—C1	170.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A…N1 ⁱ	0.86	1.98	2.838 (3)	174
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$.				

